
Security Analysis of Cryptsetup/LUKS
Ubuntu Privacy Remix Team <info@privacy-cd.org>

August 12, 2012

Contents

1. Introduction...1

2. Analyzed Version of Cryptsetup..2
Data of Cryptsetup 1.4.1...2

3. Compiling Cryptsetup from Sources...2

4. Methodology of Analysis...3

5. The Programs luksanalyzer and hashtest...4
The Program luksanalyzer..4
The Program hashtest...5

6. Findings of Analysis..6
The License of Cryptsetup..6
Website and Documentation of Cryptsetup/LUKS...6
Cipher Algorithms in Cryptsetup/LUKS..7
Modes of Encryption in Cryptsetup/LUKS...7
Derivation of User Keys from Passwords..9
Anti-forensic Information Splitting of Keys...10
The Random Number Generator in Cryptsetup...11
The Format of LUKS Headers...12

7. Conclusion..13

Bibliography...13

1. Introduction
Since version 12.04 Ubuntu Privacy Remix besides TrueCrypt supports Cryptsetup with LUKS1 as
well for volume encryption. For this reason we analyzed the security of Cryptsetup/LUKS just as
that of TrueCrypt (see [UPR2011]). This analysis serves the same purpose as that of TrueCrypt,
that is to help people to form their own sound opinion on the security of the encryption. As Ubuntu
Privacy Remix 12.04 offers the choice between these two encryption programs we every so often
compare these programs and their peculiarities in this analysis. Again we invite everyone reading
this to criticize our method and findings or make suggestions for further analysis.

Cryptsetup with LUKS is exclusively developed for Linux. But the encryption software FreeOTFE
developed by Sarah Dean for Windows and PDAs supports the LUKS format also. So volumes en-
crypted with Cryptsetup/LUKS on Linux can be opened with FreeOTFE on Windows or on a PDA.
However, we will not analyze FreeOTFE in the following. Cryptsetup is distributed under the “Gnu
General Public License” version 2 (GPL, v2). Therefore – in contrast with TrueCrypt – there are no

1 LUKS is the acronym for “Linux Unified Key Setup”.

1

mailto:info@privacy-cd.org

legal problems with the openness of the sources of Cryptsetup.

Compared to TrueCrypt Cryptsetup isn't such a monolithic program. It rather depends on libraries
from other sources and delegates the actual encryption to a greater degree to the Linux kernel as
TrueCrypt does on Linux. Among the libraries libgcrypt from the GnuPG project is salient.
Cryptsetup uses it for calculating cryptographic hash values. Nevertheless, we restricted our analy-
sis to the sources of Cryptsetup itself. Beyond that we merely verified the hash values calculated
by libgcrypt with a test program we wrote for that purpose.

2. Analyzed Version of Cryptsetup
We have chosen the version 1.4.1 of Cryptsetup used by Ubuntu 12.04 LTS for our analysis al-
though there exist versions 1.4.3 and 1.5.0 in the meantime. The source code of this may be down-
loaded in Ubuntu 12.04 LTS with the command

apt­get source cryptsetup

which gives the three files

• cryptsetup_1.4.1.orig.tar.bz2

• cryptsetup_1.4.1­2ubuntu4.debian.tar.gz

• cryptsetup_1.4.1­2ubuntu4.dsc

The first file is identical with the source code archive cryptsetup­1.4.1.tar.bz2 as it could
be downloaded from http://code.google.com/p/cryptsetup/. The second file only contains code for
building the Debian package as well as code necessary for the integration of Cryptsetup into the
Ubuntu system. The third file finally only contains a description for the Debian package.

Data of Cryptsetup 1.4.1

Website: http://code.google.com/p/cryptsetup/

Analyzed version: Cryptsetup 1.4.1

Analyzed source code archive: cryptsetup­1.4.1.tar.bz2

MD5 fingerprint: 9253b3f29abf5c6f333eb74128b0df1c

SHA1 fingerprint: 32608be5b146a7bd3999129b086bad8b66c085b9

3. Compiling Cryptsetup from Sources
In order to build Debian packages on Ubuntu 12.04 LTS from the source code which has been
downloaded as described in section 2 you have to install the tools for building Debian packages
with the command

sudo apt­get install dpkg­dev

Then you have to install the development versions of the libraries on which Cryptsetup depends
with

2

http://code.google.com/p/cryptsetup/
http://code.google.com/p/cryptsetup/

sudo apt­get install libgcrypt11­dev libdevmapper­dev libpopt­dev \
uuid­dev libselinux1­dev libsepol1­dev

Finally some additional development tools are needed and can be installed with

sudo apt­get install libtool autoconf automake autopoint gettext \
debhelper xsltproc docbook­xsl po­debconf

Thereafter you unpack the source code archive cryptsetup_1.4.1.orig.tar.gz and the
code from the archive cryptsetup_1.4.1­2ubuntu4.debian.tar.gz for building the Debian
packages with the command

dpkg­source ­x cryptsetup_1.4.1­2ubuntu4.dsc

After changing to the newly created directory with

cd cryptsetup­1.4.1

the Debian packages are built with

dpkg­buildpackage ­b ­uc

The option ­b has the effect that only binary packages are built and ­uc tells the command not to
sign the file cryptsetup_1.4.1­2ubuntu4_i386.changes with GnuPG2. It is created togeth-
er with the packages and contains their checksums. On a 32-bit-x86 system the packages

• cryptsetup_1.4.1­2ubuntu4_i386.deb

• cryptsetup­bin_1.4.1­2ubuntu4_i386.deb

• cryptsetup­udeb_1.4.1­2ubuntu4_i386.udeb

• libcryptsetup4_1.4.1­2ubuntu4_i386.deb

• libcryptsetup4­udeb_1.4.1­2ubuntu4_i386.udeb

• libcryptsetup­dev_1.4.1­2ubuntu4_i386.deb

are to be found one level up in the directory hierarchy. On other processor architectures corre-
sponding packages are created where i386 in the names is replaced by a notation of the respec-
tive architecture. Files with ending .udeb are packages in the so-called micro-Debian format
which are needed in the boot process of the computer if it already has to decrypt some file system.

4. Methodology of Analysis
The development of LUKS by Clemens Fruhwirth was theoretically substantiated by two publica-
tions (see [Fru2004] and [Fru2005]) which we studied first together with the specification of the for-
mat of LUKS [Fru2011]. We then carefully read the source code contained in the archive crypt­
setup­1.4.1.tar.bz2. An encryption or decryption isn't performed in this code. Where it is
needed Cryptsetup charges the Linux kernel with this task via the device mapper interface. The so-
lution of this task then proceeds exactly the same as with TrueCrypt which uses the same interface
to assign the job of encryption and decryption of the volume to the Linux kernel3. Cryptsetup goes
even further than TrueCrypt by assigning the job of decryption of the master key also to the Linux
kernel. As we already analyzed this encryption and decryption in the Linux kernel in the context of

2 If you want to sign this file you have to replace the option ­uc with ­k followed by the key ID without any
space in between. If the GnuPG signing key isn't given by this option the command would try to use the
key of the last-mentioned maintainer in debian/changelog which would fail if you haven't created a
GnuPG key with the name of that maintainer.

3 There only is a distinction when the CBC-ESSIV mode of LUKS is used which is unknown to TrueCrypt.

3

our analysis of TrueCrypt (see [UPR2011]) there was no need for us to re-examine this.

For the derivation of the key encrypting the master key from the password as well as for other se-
curity features Cryptsetup with LUKS needs cryptographic hash algorithms. For the calculation of
hash values it solely uses the library libgcrypt11 from the GnuPG project. We abstained from
analyzing the source code of this library as well. Instead we wrote the program hashtest which
calculates all sorts of hash values with this library. For all hash algorithms used by Cryptsetup we
then calculated a vast number of hash values for distinct inputs and compared them to reference
values which have been calculated independently. For the calculation of reference values among
others the programs md5sum, sha1sum, sha256sum and sha512sum as well as openssl have
been used. The compared values always matched. Our hashtest program also tests the capabili-
ty of libgcrypt11 to calculate HMAC-values. These values likewise always matched the values
calculated by our code.

Moreover we wrote the program luksanalyzer which decrypts and analyzes the LUKS header
as it has been written to disk with Cryptsetup/LUKS. It also uses the library libgcrypt11 for hash
algorithms and for decryption with cipher algorithms. All other security features of Cryptsetup with
LUKS have been reimplemented independently by us in this program. We have analyzed a lot of
headers of test volumes created with Cryptsetup/LUKS. All relevant combinations of ciphers, hash
algorithms and encryption modes have been checked by this means.

5. The Programs luksanalyzer and hashtest
We wrote the programs luksanalyzer and hashtest for the purpose of our analysis. The
source code of both is maid available together in the archive luksanalyzer.tar.gz under the
“GNU General Public License” version 3 or optionally any later version (GPL, v3+).

The Program luksanalyzer
The program luksanalyzer must only be applied to LUKS-encrypted volumes created for test
purposes. Otherwise the encryption will be compromised by the output of the master key. It ana-
lyzes the LUKS partition header and key slots for an encrypted partition and has the following op-
tions to be given on the command line:

• -h, --help: print a help message and exit.

• -d, --dump file: dump the decrypted anti-forensic key to the given file.

• -o, --out file: write the output to the given file, without this option output is written to the ter-
minal.

• -p, --passphrase password: use the given password for analyzing, this option is mandato-
ry.

• -s, --slot key-number: analyze only the given key slot (a number between 0 and 7), with-
out this option all slots will be tried.

• -v, --volume device-file: analyze the volume on the given device, this option is mandatory.

The output of let's say the command

luksanalyzer ­p test ­s 0 ­v /dev/sdb1

then typically looks like the following:

Analysis of LUKS Volume on /dev/sdb1

4

Header:
==
 0: 4c 55 4b 53 ba be | magic byte sequence for
LUKS partition header
 6: 00 01 | version: 1
 8: 61 65 73 00 00 00 00 00 00 00 00 00 00 00 00 00 | ...
 24: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | cipher name: aes
 40: 78 74 73 2d 70 6c 61 69 6e 36 34 00 00 00 00 00 | ...
 56: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | cipher mode: xts­
plain64
 72: 73 68 61 35 31 32 00 00 00 00 00 00 00 00 00 00 | ...
 88: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | hash specification:
sha512
 104: 00 00 0f c8 | payload offset (in
sectors): 4040
 108: 00 00 00 40 | key bytes: 64
 112: 75 9b bf 34 7b 73 8b 38 02 82 c9 8a f3 82 89 dd | ...
 128: 28 01 c0 70 | master key checksum
 132: 4a c5 91 43 ed da 70 2c 4e b7 c6 7b 02 6c c4 d2 | ...
 148: 76 54 b7 ca d0 0f 3e 61 cc 2e 6f 22 12 89 2b 66 | PBKDF2 salt for master
key checksum
 164: 00 00 b6 ec | PBKDF2 iterations for
master key checksum: 46828
 168: 66 38 62 65 31 61 39 39 2d 38 30 30 65 2d 34 61 | ...
 184: 66 34 2d 62 33 38 66 2d 35 35 37 63 66 62 30 64 | ...
 200: 66 37 63 33 00 00 00 00 | UUID of the partition:
f8be1a99­800e­4af4­b38f­557cfb0df7c3
==

KeySlot 0:
­­
 208: 00 ac 71 f3 | state of keyslot:
enabled
 212: 00 02 77 c1 | PBKDF2 iterations for
passphrase of keyslot: 161729
 216: 2c c7 56 b0 df ef 08 80 c9 f4 c3 5d ee fd 10 dd | ...
 232: 54 5b 40 ab 1e a0 ff 33 13 1a ea 90 42 8e 1d a9 | PBKDF2 salt for keyslot
 248: 00 00 00 08 | start sector of key
material for keyslot: 8
 252: 00 00 0f a0 | number of anti­forensic
stripes for keyslot: 4000
­­
mk: 0: 7a 5b 94 26 db 26 27 30 3c fc d0 34 b8 a4 d4 4b | ...
mk:16: 78 8f c7 fe 6d 42 1e f4 09 b2 08 c1 06 c6 30 e1 | ...
mk:32: 5e fa 23 f6 6f 4b 38 3f dd b7 ac 9e f6 f7 c9 a1 | ...
mk:48: cf 9a e7 2f c3 88 1e 10 c4 58 4c 03 fb 93 a4 81 | master key (verified
with checksum)
­­

The Program hashtest
The program hashtest calculates hash and HMAC values either for a password given on the
command line or for the contents of a file. For HMAC values you also have to give the key to the
HMAC algorithm on the command line. For them two calculations are compared, one with the inter-
nal HMAC capability of libgcrypt11 and the other with an external HMAC coded in hashtest
using only hash values calculated with libgcrypt11. In order to verify the hash values they have
to be double-checked by an independent calculation with other programs like md5sum, sha1sum,
sha256sum and sha512sum or openssl dgst. The options of hashtest are:

5

• -h, --help: print a help message and exit.

• -d, --digest Algorithm: test the given digest algorithm. Strings identifying the digest algo-
rithms are case-insensitive.

• -f, --file file: calculate hash or HMAC of the contents of the given file.

• -k, --key key: calculate a HMAC with the given key instead of a simple hash. This is
done internally using the HMAC capability of libgcrypt11 and externally using only
the hashing capability of libgcrypt11. Both values are printed and have to be the same.
If not an error message is printed.

• -p, --passphrase password: calculate hash or HMAC of the given passphrase.

• -v, --version: print the version number of libgcrypt11 and the digest algorithms supported
by it with their internal identification number.

HMAC values may also be calculated independently with the command

openssl dgst ­algorithm ­hmac key file

or

echo ­n password | openssl dgst ­algorithm ­hmac key

respectively for verification. Here algorithm has to be replaced with one of the algorithms sha1,
sha256, sha512 or ripemd160 just as by hashtest and key, file and password also have to be
the same as given to the program hashtest.

6. Findings of Analysis

The License of Cryptsetup
Cryptsetup is distributed under the “Gnu General Public License” version 2 (GPL, v2). In contrast
with TrueCrypt, we therefore have no problem with the license. The maintainers of Cryptsetup even
discuss and possibly accept change requests. This is quite in contrast with the habit of the devel-
opers of TrueCrypt who ignore all proposals of changes.

Website and Documentation of Cryptsetup/LUKS
The website http://code.google.com/p/cryptsetup/ offers all versions of Cryptsetup for download
which ever have been published. A Wiki on that website contains interesting articles and discus-
sions on Cryptsetup and LUKS. Bug reports, issues and proposals for enhancements may be fol-
lowed up in a bug-tracker there. In order to add new issues to that bug-tracker you need a previ-
ously created Google account.

Finally also the source code is accessible in the version control system git on that website. This
may be downloaded with the command

git clone https://code.google.com/p/cryptsetup/

with up to date changes and the history of the code. For this you only need to install the version
control system git on your computer. Of course, write access to this version control system is lim-
ited to the developers of the project. Other developers, however, are facilitated by this if they want
to follow the current development of Cryptsetup or even to submit concrete code changes them-
selves.

6

http://code.google.com/p/cryptsetup/

Cipher Algorithms in Cryptsetup/LUKS
Cryptsetup can set up a LUKS-encrypted volume with any cipher supported by the Linux kernel.
However, [Fru2011] specifies only five cipher algorithms to be chosen for LUKS-encrypted vol-
umes:

• aes,

• twofish,

• serpent,

• cast5 (also known as CAST-128) and

• cast6 (also know as CAST-256).

They have to be given to Cryptsetup in the parameter ­c or ­­cipher exactly as specified here in
lower case letters. Rijndael, Twofish and Serpent were finalists and CAST6 a candidate in the
world wide competition by which Rijndael was selected by NIST (National Institute of Standards
and Technology of the USA) for Advanced Encryption Standard (AES) in October 2000 (see
[NIST2001]). All ciphers have been designed by teams of well-known cryptographers and scruti-
nized publicly and intensively in the process of that competition. No security holes have been found
in these ciphers.

CAST5 is a predecessor of CAST6 and operates with a block length of only 64 Bit compared with
128 Bit block length of the other algorithms. Although CAST5 is the default cipher in GnuPG and in
some versions of PGP we do not recommend this cipher for volume encryption because of the low
block length.

AES distinguishes itself among the other specified ciphers by being an international standard. On
this basis we recommend the choice of AES. AES just as Twofish, Serpent and CAST6 permits key
sizes of 128, 192 and 256 bits. Generally the security increases with the size of the key. Therefore
a key size of 256 recommends itself4.

In contrast with TrueCrypt, Cryptsetup does not provide combinations of several ciphers. This is an
advantage of TrueCrypt as a multiple encryption with several ciphers with independent keys is as
strong as the strongest cipher in the cascade. If one of those ciphers gets broken the whole en-
cryption is still safe as it is protected by another unbroken cipher. Application of multiple ciphers, on
the other hand, slows down the process of encryption and decryption. There, however, is already a
discussion on http://code.google.com/p/cryptsetup/wiki/LUKSSpec20BrainStorming whether a new
version 2.0 of the LUKS specification should allow cipher cascades.

Modes of Encryption in Cryptsetup/LUKS
The cipher algorithms are operating on blocks of 16 bytes (128 bits) except for CAST5 which is op-
erating on blocks of 8 bytes (64 bits). So as not to encrypt blocks with identical contents to identical
blocks within the encrypted volume the encryption is modified slightly from one block to the other.
This is called the encryption mode.

As for ciphers the supported modes of encryption in Cryptsetup with or without LUKS only depend
on the Linux kernel. The modes specified in [Fru2011] are

• ecb,

• cbc­plain,

• cbc­essiv:hash and

4 If the XTS mode of encryption is chosen, you have to specify twice that key size when creating an en-
crypted volume with Cryptsetup. This is so since XTS needs two different keys and Cryptsetup expects in
its option ­­key­size or ­s respectively the specification of the total size of both keys joined together.

7

http://code.google.com/p/cryptsetup/wiki/LUKSSpec20BrainStorming

• xts­plain64.

Just as the cipher, the encryption mode has to be given to Cryptsetup in the parameter ­c or
­­cipher exactly as specified here in lower case letters appended to the cipher and separated
from it by a minus sign. In cbc­essiv:hash hash has to be replaced by a valid hash algorithm
(sha1, sha256, sha512 or ripemd160).

In ECB (electronic code-book) mode every block is encrypted separately and independently of the
other blocks and of its position in the volume. So this mode does not solve the problem of modify-
ing the encryption. Therefore, it is absolutely not suitable for a serious volume encryption.

In the plain CBC (cipher-block chaining) mode every plain-text block is combined with the previous
cipher-text block by an exclusive-or (XOR) operation before it is encrypted. This chaining is cut at
every sector boundary and re-initialized with the sector number which converted to 32-bit and to lit-
tle-endian replaces the previous cipher-text block for the first block in every sector. This mode has
considerable weaknesses as exposed by Clemens Fruhwirth in chapter 4 of [Fru2005]. We refer to
the content leak problem, the “watermarking attack”, the data modification leak and the “malleabili-
ty weakness” of the plain CBC mode discussed there. Due to these weaknesses we do not recom-
mend using cbc­plain as encryption mode in Cryptsetup.

The CBC-ESSIV mode (cipher-block chaining – encrypted salt-sector initialization vector) was in-
vented for LUKS by Clemens Fruhwirth. In this mode the hash algorithm specified after the colon is
used to create a second key as hash value of the first one. With this second key the sector number
converted to 64-bit and to little-endian is encrypted. That encrypted sector number then re-initial-
izes the chaining in each sector as the plain sector number does in plain CBC mode. For this mode
the length of the hash value must be the same as the key length of the cipher. By the initialization
of the CBC mode in the sectors with an encrypted value which therefore is unknown to an attacker
the “watermarking attack” is made impossible. The other three less serious weaknesses of the
plain CBC mode remain in the CBC-ESSIV mode.

The origin of the XTS mode was the XEX (XOR – Encrypt – XOR) mode invented by Phillip Rog-
away (see [Rog2004]). It uses a construction of Liskov, Rivest and Wagner (see [LRW2002]) but
avoids a vulnerability of their LRW mode when the second LRW key itself is encrypted and stored.
In 2007 XEX was standardized by IEEE (Institute of Electrical and Electronics Engineers, Inc.) with
a modification and an extension (see [IEEE2007]) with the new acronym XTS (XEX Tweakable
Block Cipher with Cipher Text Stealing). The modification was that two keys are used in XTS mode
instead of one key in XEX mode. The extension only concerns the case when the size of the en-
crypted data units isn't a multiple of the block length of the cipher algorithm. For this case the ci-
pher text stealing is needed. For LUKS this doesn't matter as the sector size of 512 bytes is a mul-
tiple of the 16 byte or 8 byte block lengths of the algorithms specified by LUKS. In January 2010
the XTS mode in conjunction with AES was approved by NIST (National Institute of Standards and
Technology, U.S. Department of Commerce) as a national standard for the USA (see [NIST2010]).

In the XTS mode implemented as xts­plain64 in the Linux kernel a second key encrypts the
sector number converted to 64-bit and to little-endian. This results in the “tweak” for the first block
in the sector. A multiplication in the Galois field GF 2128 modifies the “tweak” for each subse-
quent block. This “tweak” then is combined with the block by an exclusive-or (XOR) operation
once before and again after the encryption with the first key. As this requires 128-bit blocks the ci-
pher CAST5 can't be used with the XTS mode in LUKS. Besides xts­plain64 the Linux kernel
also implements the mode xts­plain. It handles the sector number as a 32-bit number but other-
wise does not differ from xts­plain64. This has the disadvantage that sectors with the same
contents are equally encrypted already after 232 sectors or 2 TiB. Therefore this mode isn't suit-
able for encryption of large volumes and for that reason it isn't specified in [Fru2011] as a valid
mode in Cryptsetup/LUKS.

The XTS mode is not vulnerable to the content leak problem. In CBC and in CBC-ESSIV mode this
occurs with a very small probability which however increases with the size of the encrypted volume
if two 128-bit blocks happen to be encrypted with the same result by accident. The XTS mode is

8

also not vulnerable to the “watermarking attack”. In it the attacker is able to provoke the situation of
the content leak problem that two different blocks are encrypted with the same result and if this ac-
tually occurs he knows that the data tagged by him have been written to the encrypted volume.

The concept of non-malleability has been introduced to cryptography by Dolev, Dwork and Naor
(see [DDN2000]). Roughly speaking it means that given a cipher text an attacker can't find a differ-
ent cipher text such that the corresponding plain texts are related to each other in any predefined
relation other than being different. As in CBC mode in CBC-ESSIV mode every bit of a block can
be flipped intentionally at the cost of randomizing the preceding block. This isn't possible in XTS
mode. It is only “malleable” in the sense that an attacker can change whole 128-bit blocks in an un-
controlled manner while keeping other blocks unchanged. The substantial “malleability” of CBC-
ESSIV mode, however, is a serious weakness in our opinion. We therefore recommend to use the
mode xts­plain64 in Cryptsetup/LUKS. The mode xts­plain64 is identical with the mode of
encryption TrueCrypt uses since version 5.

The data modification leak remains in all modes specified by [Fru2011]. An attacker watching the
encrypted volume at two distinct points in time may deduce from the comparison of his observa-
tions which blocks have changed in the meantime. But this weakness is inevitable for a volume en-
cryption as the complete encrypted volume can't be rewritten with every change of some data in it.
This could only be mitigated if larger units – for example entire 512-byte sectors instead of 16-byte
blocks – were selected as units of data encryption. This is the goal pursued by the development of
another standard of IEEE (see [IEEE2010]). We consider Cryptsetup/LUKS with the XTS mode to
be secure even though it does not support this standard.

Derivation of User Keys from Passwords
In Cryptsetup/LUKS a user key is derived from his password by the “Password-Based Key Deriva-
tion Function 2” (PBKDF2) as it is described in the standard PKCS #5 of RSA Laboratories (see
[PKCS5v20] and [RFC2898]) which has been updated in 2006 (see [PKCS5v21]) to incorporate
new hash algorithms. In Cryptsetup/LUKS eight different “slots” for up to eight different user keys
are available. With each user key which has been activated the volume can be decrypted. This of-
fers a greater flexibility for team usage as TrueCrypt does where only one password may decrypt
the volume. After an encrypted volume has been created with the command cryptsetup luks­
Format more user keys may be added with the command cryptsetup luksAddKey. For that
only one already valid password has to be supplied. With one of the commands cryptsetup
luksRemoveKey or cryptsetup luksKillSlot each single user key may be deleted. In the
first case you have to give the password to be deleted. In the second case the slot number of the
user key to be deleted must be specified.

In PBKDF2 the necessary key length is divided into blocks of the length of the hash value for the
used hash algorithm. The last block may be smaller if necessary. Then the salt value stored in the
key slot is supplemented with a four byte representation of the block number. With this supple-
mented salt value and the password a HMAC value is calculated. This procedure is iterated by cal-
culating a new HMAC value from the last HMAC value and the password again and again. The fi -
nal HMAC value makes the block of the key. For the last key block this still has to be truncated if its
length is smaller than the length of the hash value.

The standard PKCS #5 recommends at least 1000 iterations for the derivation of the user key from
the password. The point of this is is to make the derivation of the user key from the password ex-
pensive. No method is known by which an attacker might abridge this procedure. If he checks a
large number of potential passwords from a “dictionary” specially prepared for this purpose he has
to devote this large effort to each password from his dictionary. So his total computational effort is
pushed up tremendously by the iteration count.

TrueCrypt also uses PBKDF2 from the standard PKCS #5 for derivation of the user key from the
password. The main difference between Cryptsetup/LUKS on the one hand and TrueCrypt on the
other hand is the iteration count. TrueCrypt for the hash algorithms SHA-512 and Whirlpool exactly

9

executes the recommended minimum of 1000 iterations. For the old hash algorithm Ripemd-160 it
does 2000 iterations. Cryptsetup/LUKS on the other hand does a benchmark test on the computer
where it is running how many iterations it can do within one second. With the option ­­iter­time
or ­i any other time may be chosen therefore and specified in milliseconds. Then the result of this
benchmark test will be the number of iterations for the derivation of the user key from the pass-
word. On up to date hardware the thus chosen number of iterations will be many times over the
constant values chosen by TrueCrypt. On very fast processors it may even reach millions.

This choice of the iteration count with a benchmark test in our opinion is an essential advantage of
Cryptsetup/LUKS over TrueCrypt. The password mostly is the weakest point in the security of a
volume encryption and dictionary attacks become better and better with the increasing speed of
hardware sold at a time. This is encountered by Cryptsetup/LUKS by pushing up the amount of
work for a dictionary attack to the same extent as hardware gets faster. Today an attacker has to
pay about 100 to 1000 times more for the computing power for a dictionary attack on a
Cryptsetup/LUKS encrypted volume created on current hardware than he has to pay for the same
attack on a TrueCrypt volume encrypted with the same password.

After a program for volume encryption has derived the user key from the supplied password it has
to verify in a second step that this key and therefore the password is correct. TrueCrypt does this
by decrypting the remainder of the header and checking for the string “TRUE” at a predetermined
position in the decrypted header. In addition it calculates two CRC-32 checksums and compares
them with values from the decrypted header.

Cryptsetup/LUKS follows another procedure for the verification. It decrypts with the derived user
key the key material of the key slot used. For the resulting master key a checksum is calculated
again by PBKDF2 from the standard PKCS #5 and a salt value from the partition header. This is
compared with the value of that checksum stored in the header. So this second step also is much
more expensive in Cryptsetup/LUKS as it is in TrueCrypt where it is negligible. However, an attack-
er could try to reduce the computing effort for the verification by decrypting the first few sectors of
the volume with the calculated master key and checking whether they contain a known file system
or only random data.

Anti-forensic Information Splitting of Keys
Anti-forensic data storage (see [Fru2004] and [Fru2005]) is a feature specially developed for LUKS
by Clemens Fruhwirth. It was meant as a counter-measure against recovery of a deleted user key
from remnant magnetizations on a magnetic hard disk in a forensic laboratory. No other volume en-
cryption program has such a feature except for FreeOTFE which supports the LUKS format. For
modern solid-state drives (SSD), USB flash drives and compact flash memory cards the problem of
forensic data recovery is even more serious as the wear leveling algorithms in the controller of
such media might prevent a user key from being actually deleted at all.

The idea of anti-forensic information splitting in LUKS is to enlarge the size of every storage region
for the master key encrypted with one of the user keys such that all parts of this storage region are
required in order to recover the master key. This aims at a marked increase in probability that at
least one part of the key can't be recovered from remnant magnetizations or has escaped the wear
leveling algorithm preventing it from being actually deleted. If this has been achieved the whole key
and also any part of it can't be recovered.

For this purpose the information of the master key is split to a number of so-called “stripes” each
having the size of the master key. In principle according to the LUKS standard this number may be
chosen arbitrarily. However, Cryptsetup on creating a new encrypted volume always chooses the
fixed value 4000 for this which can't be changed by an option of Cryptsetup. All stripes except for
the last one are filled with random values. The last stripe is calculated such that from all stripes to-
gether the master key may be deduced. The calculation goes as follows: With the hash algorithm,
also used to derive the user key from the password, the information in the stripe is diffused and
then added to the next stripe by an exclusive-or (XOR) operation. Thereafter the modified next

10

stripe is processed the same way. In the last step the result of the diffusion is added by an XOR-
operation to the master key which makes the last stripe.

For the cipher algorithms specified in LUKS according to [Fru2011] the greatest key length is 256
bits or 32 bytes respectively. With the XTS mode, which needs two keys, this doubles to 512 bits or
64 bytes respectively. Hence, the storage region for the split master key may have at most 256000
bytes which is 250 KiB. Only after this splitting the storage region is encrypted with the key derived
from the password of the user and with the chosen encryption mode. Finally this is written to the
data medium.

Manufacturers of solid-state drives (SSD), USB flash drives and compact flash memory cards only
publish very scanty information on their wear leveling algorithms. Documents available on the inter-
net (see e.g. [NIC2012]) with respect to the blocks on which the wear leveling algorithms operate
talk about block sizes ranging from 16 KiB to 1 MiB depending on the size of the SSD. According to
that information 4000 stripes in anti-forensic information splitting today are no longer sufficient in
order to decrease the probability of forensic recovery of a deleted key on a larger solid-state drive.

The Random Number Generator in Cryptsetup
Cryptsetup does not implement an own pseudo-random number generator but uses that of the Lin-
ux system – either from the device /dev/urandom or from /dev/random. In this respect it does
not differ substantially from TrueCrypt on a Linux system. In [UPR2011] we criticized the random
number generator of TrueCrypt. This likewise applies to Cryptsetup. Weaknesses of the pseu-
do-random number generator of Linux are in-depth analyzed in [GPR2006] by Gutterman, Pinkas
and Reinman. However, the right place to fix these weaknesses is the Linux kernel and not Crypt-
setup. But the Linux kernel developers rejected the criticism of Gutterman, Pinkas and Reinman as
mostly academic (see [Edge2006] and [Tso2006]). They were only willing to do some small correc-
tions.

In [UPR2011] we pushed the pseudo-random number generator Yarrow (see [KSF1999]). Gutter-
man, Pinkas and Reinman on the other hand recommend the architecture of the pseudo-random
number generator of Barak and Halevi (see [BH2006]) which has a formal proof of security. It deals
with the following three properties of the pseudo-random number generator:

• Resilience. The output of the generator looks like genuine random data to an attacker with
no knowledge of it's internal state. This holds even if that attacker from some time on has
complete control over data that is used to refresh the internal state.

• Forward security. Past output of the generator may not be deduced neither in total nor in
part by an attacker who learns the internal state of the generator at a later time.

• Backward security/Break-in recovery. An attacker who learns the internal state of the gener-
ator at some time cannot deduce any predictions on future output of the generator after it
has been refreshed with data of sufficient entropy unknown to the attacker.

In [GPR2006] the lacking forward security of the Linux pseudo-random number generator is criti-
cized. The delineated attack however requires a very high computing power. In a secure environ-
ment such as Ubuntu privacy remix where events like mouse movements and keyboard input un-
predictable for the attacker are also available for the refreshment of the generator this criticism is
irrelevant in practice. This is so because the secure environment prevents that an attacker may
learn the internal state of the pseudo-random number generator. In order to enhance this security
ensured by the system we recommend to shut down the computer instead of leaving it unattended
when it is no longer needed after an encrypted volume has been created. Otherwise an attacker
might access the system, possibly acquire root privileges and then reading the internal state of the
pseudo-random number generator from kernel memory.

The devices /dev/urandom and /dev/random on a Linux system are distinguished by their be-
havior in case that according to the estimation of the system not enough entropy from new random

11

events has refreshed the internal state of the generator. In that case /dev/random blocks in con-
trast to /dev/urandom which continues to provide pseudo-random values. The recommendation
on Linux is to use /dev/random only for the most valuable long-lived cryptographic keys and to
use /dev/urandom for everything else. Cryptsetup by default uses /dev/urandom. This, howev-
er, may be changed with the option ­­use­random on the command line so that /dev/random
will be used. If mouse movements or keyboard input from the user are available as a source of en-
tropy which could prevent the device from blocking forever, we recommend to use this option.

The Format of LUKS Headers
Cryptsetup/LUKS writes a header at the beginning of an encrypted partition. This header starts
with the partition header which has a size of 208 bytes. Then eight slots for up to eight different
user keys follow each having a size of 48 bytes. The partition header and the eight slots are stored
unencrypted. After that space for key material is reserved where for each of the eight slots the
master key enlarged by anti-forensic information splitting and encrypted with a key derived from
the users password may be stored. The size of this reserved region depends on the size of the
master key. But it is always aligned to sector boundaries.

The following table specifies the format of the partition header.

Start Size Description of the field

0 6 Magic label consisting of the bytes 'L', 'U', 'K', 'S', 0xba, 0xbe

6 2 Version number of the LUKS format, currently 0x00, 0x01

8 32 Name of the cipher

40 32 Name of the mode of encryption

72 32 Name of the hash algorithm

104 4 Number of the Sector, where the encrypted payload begins

108 4 Size of the master key in bytes

112 20 Value of the checksum calculated by PBKDF2 for the master key

132 32 Salt value for calculating the checksum by PBKDF2

164 4 Iteration count for calculating the checksum by PBKDF2

168 40 UUID of the partition

The format of each of the eight slots is specified in the following table.

Start Size Description of the field

0 4 State of slot, enabled (0x00, 0xac, 0x71, 0xf3) or disabled (0x00, 0x00, 0xde, 0xad)

4 4 Iteration count for calculating the user key by PBKDF2

8 32 Salt value for calculating the user key by PBKDF2

40 4 Number of the sector, where the key material for the slot starts

44 4 Number of anti-forensic stripes

These eight slots follow one immediately after the other subsequent to the partition header. The
specification of start values for the fields here are to be interpreted relative to the start of the slot.

12

7. Conclusion
Cryptsetup with LUKS is a highly secure program for encrypting whole data media or partitions
thereupon. The encryption algorithms and other security mechanism it implements comply with the
current state of the art in cryptography. We found no back door or security-related mistake in the
published source code. If you use this program in a secure environment such as Ubuntu privacy
remix you may assume with high certainty that no one can get access to the data stored in your
volumes as long as they are closed, the passwords are really good and the attacker doesn't apply
highly advanced methods below the layer of the operation system, such as BIOS rootkits, hard-
ware keyloggers or video surveillance. A special strong point of Cryptsetup with LUKS is its high
power of resistance against dictionary attacks. This resisting power is adapted to the increased
speed of hardware when new encrypted volumes are created on new up to date hardware.

Just as for TrueCrypt (see [UPR2011]) we recommend for Cryptsetup as well to compile your bina-
ries yourself from the source code if you don't want to put blind confidence in the vendor of your
Linux distribution. For Ubuntu privacy remix 12.04 we did that. In our guide for building this live
DVD this is also advised. For that purpose we described in section 3 in detail the steps to build a
Debian package from that sources. In section 2 we listed the MD5 and SHA1 fingerprints of the
source code we analyzed. So you may check that you have the same source code if you want to
compile it yourself. In order to do so use the programs md5sum and sha1sum with the source code
archive as a parameter.

From the analysis in section 6 we draw the following conclusions. They are meant as a summary.
For the rational behind them see section 6.

• The encryption algorithms AES, Twofish, Serpent and CAST6 are well suited. As an inter-
national standard AES is particularly recommendable. For the mode of encryption XTS
should be selected. Compared to the CBC-ESSIV mode it has the advantage of being hard-
ly malleable. Other modes of encryption in LUKS are out of the question. The hash algo-
rithm should best be selected such that the length of the hash value matches the length of
the key. For one of the above mentioned encryption algorithms with the XTS mode SHA512
fits best. For one of these algorithms with the CBC-ESSIV mode SHA256 is suitable.

• We recommend to use the option ­­use­random of Cryptsetup and to wiggle with the
mouse for about a minute before and during the creation of a new encrypted volume with
Cryptsetup/LUKS.

• With the option ­­iter­time or ­i respectively and a time in milliseconds of significantly
more than 1000 the resistance against dictionary attacks can be further enhanced. This is
particularly advisable on older hardware. For this increased security you have to accept the
disadvantage that later opening of the volume will always take longer as determined by the
given time.

• If a team or group of up to eight people has to work with a common encrypted volume each
team member may use his own password. New user keys may be added to the encrypted
volume and old user keys may be removed.

Bibliography

[BH2006] Boaz Barak and Shai Halevi: A model and architecture for pseudo-random
generation with applications to /dev/random, 2006, http://eprint.iacr.org/2005/029.pdf

[DDN2000] Danny Dolev, Cynthia Dwork and Moni Naor: Non-Malleable Cryptography, 2000,
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/nmc.ps

13

http://www.wisdom.weizmann.ac.il/~naor/PAPERS/nmc.ps
http://eprint.iacr.org/2005/029.pdf

[Edge2006] Jake Edge: Holes in the Linux random number generator?, 2006,
http://lwn.net/Articles/184925/

[Fru2004] Clemens Fruhwirth: TKS1 - An anti-forensic, two level, and iterated key setup
scheme, 2004, http://clemens.endorphin.org/TKS1-draft.pdf

[Fru2005] Clemens Fruhwirth: New Methods in Hard Disk Encryption, 2005,
http://clemens.endorphin.org/nmihde/nmihde-A4-os.pdf

[Fru2011] Clemens Fruhwirth: LUKS On-Disk Format Specification Version 1.2.1, 2011,
http://wiki.cryptsetup.googlecode.com/git/LUKS-standard/on-disk-format.pdf

[GPR2006] Zvi Gutterman, Benny Pinkas and Tzachy Reinman: Analysis of the Linux Random
Number Generator, 2006, http://www.pinkas.net/PAPERS/gpr06.pdf

[IEEE2007] Security in Storage Working Group of the IEEE Computer Society Committee:
Standard for Cryptographic Protection of Data on Block-Oriented Storage Devices,
Institute of Electrical and Electronics Engineers, Inc., Standard P1619-2007, 2007,
http://standards.ieee.org/findstds/standard/1619-2007.html

[IEEE2010] Security in Storage Working Group of the IEEE Computer Society Committee: IEEE
Standard for Wide-Block Encryption for Shared Storage Media, Institute of Electrical
and Electronics Engineers, Inc., Standard 1619.2-2010, 2010,
http://standards.ieee.org/findstds/standard/1619.2-2010.html

[KSF1999] John Kelsey, Bruce Schneier and Niels Ferguson: Yarrow-160: Notes on the Design
of the Yarrow Cryptographic Pseudorandom Number Generator, 1999,
http://www.schneier.com/paper-yarrow.html

[LRW2002] Moses Liskov, Ronald L. Rivest and David Wagner: Tweakable Block Ciphers, in
Advances in Cryptology - CRYPTO 2002, ed. by M. Yung, Lecture Notes in
Computer Science (Springer, Berlin, 2002)

[NIC2012] National Instruments Corporation: Understanding and Extending the Life of my
Solid-State Drive, 2012, http://www.ni.com/white-paper/10126/en

[NIST2001] National Institute of Standards and Technology, U.S. Department of Commerce:
AES, 2001, http://csrc.nist.gov/archive/aes/index.html

[NIST2010] Morris Dworkin: Recommendation for Block Cipher Modes of Operation: The XTS-
AES Mode for Confidentiality on Storage Devices, National Institute of Standards
and Technology, Special Publication 800-38E, 2010,
http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf

[PKCS5v20] RSA Laboratories: PKCS #5 v2.0: Password-Based Cryptography Standard, 1999,
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2-0.pdf

[PKCS5v21] RSA Laboratories: PKCS #5 v2.1: Password-Based Cryptography Standard, 2006,
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2_1.pdf

[RFC2898] Burt Kaliski: Password-Based Cryptography Specification - Version 2.0, Internet
Engineering Task Force, Request for Comments: 2898 (RFC 2898), 2000,
http://www.ietf.org/rfc/rfc2898.txt

[Rog2004] Phillip Rogaway: Efficient Instantiations of Tweakable Blockciphers and
Refinements to Modes OCB and PMAC, 2004,
http://www.cs.ucdavis.edu/~rogaway/papers/offsets.pdf

[Tso2006] Theodore Ts'o: Re: /dev/random on Linux, 2006, http://lwn.net/Articles/184928/

[UPR2011] Ubuntu Privacy Remix Team: Security Analysis of TrueCrypt 7.0a with an Attack on
the Keyfile Algorithm, 2011, http://www.privacy-cd.org/downloads/truecrypt_7.0a-
analysis-en.pdf

14

http://www.privacy-cd.org/downloads/truecrypt_7.0a-analysis-en.pdf
http://www.privacy-cd.org/downloads/truecrypt_7.0a-analysis-en.pdf
http://lwn.net/Articles/184928/
http://www.cs.ucdavis.edu/~rogaway/papers/offsets.pdf
http://www.ietf.org/rfc/rfc2898.txt
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2_1.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2-0.pdf
http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf
http://csrc.nist.gov/archive/aes/index.html
http://www.ni.com/white-paper/10126/en
http://www.schneier.com/paper-yarrow.html
http://standards.ieee.org/findstds/standard/1619.2-2010.html
http://standards.ieee.org/findstds/standard/1619-2007.html
http://www.pinkas.net/PAPERS/gpr06.pdf
http://wiki.cryptsetup.googlecode.com/git/LUKS-standard/on-disk-format.pdf
http://clemens.endorphin.org/nmihde/nmihde-A4-os.pdf
http://clemens.endorphin.org/TKS1-draft.pdf
http://lwn.net/Articles/184925/

